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NOMENCLATURE 

VB= the average wear width 

VBmax = the maximal wear width 

x= row coordinate of image 

y= column coordinate of image 

g= segmented image 

f= grey level 

T0, T1, 
. . ., Tk = a series of thresholds 

k= 1, 2, ...,255 

n1= a given refractive index 

n2= a second medium with refractive index 

R = the reflection coefficient 

θt = refraction angle of light 

θi= incident angle of light 

 

1. Introduction 

Ultra-precision raster milling (UPRM) with a single crystal 

diamond tool (SCDT) is widely used to produce optical components 

of high precision and high quality in machining non-rotational 

symmetric freeform surfaces with nano-metric surface roughness and 

sub-micrometric form error. In long-time milling processes, the 

SCDT wear in such a nanometer condition is significant as slight 

degradation of tool will lead to poor surface quality of extremely high 

precision components in UPRM. And in UPRM, the time required for 

setting up is much longer than in conventional machining. More 

importantly, the machining time is generally several weeks, or even a 

month long in the manufacture of freeform products. If tool failure 

occurs, the previous setup time and the previous machining time will 

be wasted so that it lowers productivity and induces a huge economic 

loss. In order to improve components’ quality and productivity, in-

process or on-line measurement of tool wear is very extremely 

important and essential for UPRM. 

Tool wear affects surface roughness and dimensional accuracy. 

Many researchers have used various sensors, acoustic emission (AE) 

[1], dynamometers [2], vibration [3], ultrasonic vibrations [4], and 

motor spindle speed and power consumption [5] to monitor drill wear. 

The relationship was established between force signals and flank 
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the slight tool wear will influence the surface quality of work-piece due to the long machining time for high precision 

optical surface in the ultra-precision raster milling. Preliminarily, based on principle digital image processing 

technique such as median filtering, threshold segmentation, edge detection and Hough arc transform, tool wear lands 
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and outer-contours of wear lands, which can self-adaptively eliminate the influence of high frequency noises on tool 
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wear width and average tool wear width and worn volume are calculated automatically by the algorithm. The result 

indicates the method provides a possibility for its in-process 3D-wear measurement in ultra-precision raster milling 

and the algorithm reliability is validated finally. 
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wear under other cutting parameters when drilling a copper alloy [6]. 

The vibration signal processing [7] and investigation between tool 

wear and cutting force [8] have been analyzed for tool wear detection. 

The optical methods were essentially off-line and involved the 

examination of geometry using a specially adapted toolmaker’s 

microscope for the digital processing of the tool tip image [5, 9-16]. 

The relationship between tool wear and surface roughness was 

discussed [17, 18]. Various researchers have applied them to measure 

flank wear and crater wear (11-13, 21-23). Various studies on tool 

wear in single point diamond turning or conventional machining have 

been conducted by researchers, but little attention has been paid to in-

process or on-line monitoring the SCDT wear in UPRM. 

However, nowadays in UPRM, the workers only make use of 

their experience to decide whether a tool is replaced by a new one or 

not, so, when tool wear happens slightly but not heavily enough to 

influence surface quality of high precision components, the setting-up 

time is wasted so that the machining-down time is increased and the 

productivity is lowed, or when tool wear has been so great, if the tool 

wear is not detected, it weakens surface quality. In this study, firstly, 

an in-process measurement system is built up with a CCD camera and 

one piece of 100X microscopy lens is implemented on the Precitech 

Freeform Machine 705G to acquire a tool wear image. Secondly, a 

new auto-regressive calibration algorithm, where 3D topography of 

tool wear lands is reconstructed, based on the in-process image of tool 

wear by employing digital signal processing technique, to extract tool 

wear features, is developed. Finally, the 3D topography of tool wear 

reconstructed by using the auto-regressive calibration algorithm is 

compared with the tool photograph of scan electron microscopy 

(SEM) employed to observe its wear surface features. In a word, 

surface topography of tool wear is extracted self-adaptively and the 

algorithm calculates tool wear features such as the wear area, 

maximal wear width, average wear width and wear volume 

automatically. The reliability of algorithm is identified. 

 

Fig.1 Schematic configuration of a UPRM machine and an in-process 

3D measurement system 

2. Experimental Set-up and Results 

2.1 Experimental Set-up 

In Fig.1, schematic configuration of a UPRM machine (Precitech 

705G) is shown. The UPRM machine possesses three linear axes (X, 

Y and Z) and two rotational axes (B and C), a single crystal diamond 

tool (SCDT) is set up on the spindle and the workpiece is installed on 

the B axis rotation table. 

An in-process measurement system of tool wear is mounted in the 

machine of Precitech 705G, which includes a CCD camera with one 

piece of 100X microscopy lens positioned on B-axis as schematically 

shown in Fig.1. Before an image of rake face of a SCDT is captured, 

the tool must be cleared through pressure-air, and then influence of 

some of a little coolant and chips still remaining are removed from 

the image by digital image processing technique. The tool parameters 

are shown in Tab.1, which are used to calibration image pixels. 

Tab.1 SCDT parameters 

Cutting edge radius 0.001(µm) 

Tool rake angle 0 o 

Tool (nose) radius 0.017 mm 

Front clearance angle 15o 

   

Fig.2 Rake face image of a SCDT after wear a) its optical image 

(100X) and b) its 3D grey image 

2.2 Digital Image Processing Technique 

From the SCDT image captured by the CCD camera with a 100X 

lens in the normal direction of the tool rake face, as shown in Fig.2a), 

it is known that the background (black), un-wear land (grey) and wear 

land (white) are at different grey levels which provide the thresholds 

of separating the wear land from the un-wear land and background. 

The tool wear lands (white) are composed of outer- and inner-

contours, and Fig.2b shows a 3-D grey level image From the image, 

the grey levels of three regions are extremely distinctly different, the 

grey gradient from three different regions changes abruptly with 

harmful effects of coolant remains, chips and light. 

 

Fig.3 Schematic illustration of tool wear characterization 

The schematic illustration of tool wear characterization is outlined 

as shown in Fig.3, where the β is the front clearance angle of a SCDT, 

A-curve is the arc of tool nose, B’ or B-curve is the outer-contour of 

tool wear and C-curve is the inner-contour of tool wear. Moreover, 

BC-curve is constituted as the tool wear surface or profile. AC-land is 

a worn land, and BC-land is a wear land, respectively. 

As mentioned above, the problems which need to be solved 

include eliminating the feigned wear lands (white) in the un-wear 

land, smoothing and continuing the wear lands, removing the noise, 

and finally, 3D-reconstructing topographic surface of the tool wear 

lands. Preliminarily, based on digital image pre-processing technique 

such as averaging filter, threshold segmentation, edge detection and 

Hough arc transform of tool nose, it is a key to efficiently separate 

wear lands from the image to avoid influence of disturbance such as 

coolant remains and chips. Secondly, after the digital image pre-

processing method, a traverse search method of arc translation is put 

forward to eliminate feigned wear lands, and then a least square 

polynomial method is adopted to fit inner- and outer-contours of wear 

lands, which self-adaptively eliminates influence of high frequency 
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(HF) noise and connects discontinuous wear lands. Finally, a new 

auto-regressive calibration algorithm is developed to derive BC-curve 

of tool wear lands separated by previous methods to reconstruct 3D 

topography of tool wear lands and to obtain tool wear features. To 

identify the method, SEM is employed to view its photograph. The 

flow chart of the 3D measurement method of tool wear based on the 

in-process image is shown in Fig.4. 

 

Fig.4 Flow chart of the algorithm 

2.2.1 Threshold Segmentation 

Threshold segmentation is relatively a simple approach to 

segment an image into regions of similarity. The basic principle is to 

group pixels within a common range of grey levels into a pre-

determined set, which is defined by 

 255,,2,1,),(),( 1   kTyxfTkyxg kk
,    (1) 

By the grey-level histogram of the initial tool wear image (Fig.2a), 

as shown in Fig.5, two thresholds are the values of two wave troughs 

in its histogram. The two thresholds are set to segment the image A(x, 

y) (Fig.2a) to obtain a new one for which the grey values are only 

three grey values (tri-values), the background of the image (back) 0, 

the un-wear land (grey) 127, and the wear land (white ) 255. The new 

image is denoted as B(x, y), as shown in Fig.6. 

2.2.2 Edge Detection and Hough Arc Transform 

The Sobel edge detector is an extension which includes a degree 

of smoothing to automatically reduce certain artifacts caused by noise. 

The larger the filter array, the more noise reduction occurs with fewer 

edges being extracted, but as the filter becomes too large, useful 

edges may not be extracted. The Sobel filter is based on the following 

digital derivative: 
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In this paper, the Sobel eight filter operators are utilized to detect 

the outer-contour of the SCDT wear, as shown in Fig.7a) and a 

polynomial fitting method, which is as follows, is utilized to obtain 

the continuous outer-contour, as shown in Fig.7b). 

In Fig.8, the real radius of the SCDT is used to calibrate the tool 

arc in its image. So the Hough arc transform is employed to obtain the 

tool arc radius and the arc center coordinate in the image coordinate 

system, shown in Fig.8 and the new image is denoted as C(x, y). 

 
Fig.5 Grey-level histogram of Fig.2a) 

 

Fig.6 Tri-value image with the feigned wear lands (white) 

   

Fig.7 Outer contour of SCDT after the edge detection a) Sobel edge 

detection and b) Polynomial fitting outer-contour 

 

Fig.8 Arc of the tool nose after the Hough arc transform 

 

Fig.9 The flow chart of the traverse search method of arc translation 

2.2.3 Traverse Search Method of Arc Translation 

From the analysis of Fig.2 and 3, the wear land only occurs in and 

near the outer-contour, so it offers key information that the sum of 

white pixels along the tool arc increases and then reduces so that the 

maximal sum which white pixels belong to wear lands can be 

obtained. Therefore, the traverse search method of arc translation is 

proposed to eliminate the feigned wear lands (Fig.6) separated from 

wear and un-wear lands. The elimination of the feigned wear lands is 

difficult in tool wear study based on digital image processing and is 

also an extreme key. The flow chart of the traverse search method of 

arc translation is shown in Fig.9. 

The method is that by moving the radius (white pixels in C(x, y)) 
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in Fig.8 which is overlapped with Fig.6, the white pixels of C(x, y) 

interact with white pixels of the image B(x, y), the sum of those white 

pixels interacting each other in B(x, y) and C(x, y) is obtained, 

( Fig.10). When the sum is the largest one, the white pixels are 

defined as the wear land. If the pixels in B(x, y) are white and 

neighbor to the wear land, all pixels belong to the wear land. The 

image is denoted as D(x, y). The new image is denoted as E(x, y), as 

shown in Fig.11. 

 

Fig.10 The sum of white pixels intersecting between the arc and the 

tri-value image with the arc translation method 

 

Fig.11 Tri-value image after eliminating feigned wear lands 

2.2.4 Inner-contour Polynomial Fitting Method 

Although the traverse search method of arc translation is utilized 

to eliminate the feigned wear lands in the un-wear land, the feigned 

wear lands in wear lands which belong to high frequency noises are 

not eliminated. Due to the effect of light, coolant remains and little 

relics, which are also high frequency noises, in wear lands do exist 

discontinuous wear lands and little cuspidal points (Fig.12). The least 

square polynomial fitting method is employed to filter the high 

frequency noises in order to eliminate the feigned wear lands in wear 

lands and to link the discontinuous wear lands. 

 

Fig.12 Discontinuous wear lands and abnormal cusps of the inner-

contour 

 

Fig.13 Fitting degree 14 for Fig.12 

The inner-contour of the wear lands is continuity, so the least 

square polynomial fitting is taken advantage to obtain the inner-

contour, and (xi, yi) (i=1~n) of the control points are the ith row and 

the total white pixels of the ith row of the image E(x, y), separately. 

The polynomial function is 
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where (xi, yi) (i=1~n) are the control point coordinates in one 

coordinate system, the above function is used for every control point 

to obtain the linear equation group, where n in the linear equation 

group are more than m+1 (unknown parameters), the value of the 

unknown parameters by the equation group cannot be gotten, which is 

called as an over-determined linear equation group. So the least 

square polynomial fitting will be used, which is  
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If S is minimal, then these unknown parameters ai (i=0, . . ., m) 
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Fig.13 shows the relationship between the sum of white pixels for 

each row in wear lands and the result after filtering the wear feigned 

lands by using the least square polynomial fitting method. Then after 

combining the outline-curve with the least square polynomial fitting 

result of tool wear lands, the wear land is obtained as shown in Fig.14. 

 

Fig.14 Final wear land 

 

Fig.15 Schematic diagram of relationship between light reflection and 

refraction 

Fig.14 shows that the average wear width of rake face (VB) (AC-

line just as shown in Fig.3) is 23.863 pixels and max (VBmax) 32 

pixels. And according to the image calibration, the calibration value is 

0.0576µm, so the VB is 1.375µm, VBmax is 1.84µm and the worn area 

(AC-land just as shown in Fig.3) is 28.702µm2 in the physical scale. 

2.3 Auto-regressive Calibration Method 

When light moves from a medium of a given refractive index n1 

into a second medium with refractive index n2, both reflection and 

refraction of the light may occur, shown as Fig.15. 

In the diagram on the right, the fraction of the incident power that 

is reflected from the interface is given by the reflection coefficient R. 

The reflection coefficient R is given by 
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)cos())sin((1

)cos())sin((1

))sin((1)cos(

))sin((1)cos(

2/
)cos()cos(

)cos()cos(

)cos()cos(

)cos()cos(

2/
)tan(

)tan(

)sin(

)sin(

2

2

2

2

1
1

2

2

2

1
1

2

2

2

1
21

2

2

1
21

2

21

21

2

21

21

22



























































































































































ii

ii

ii

ii

it

it

ti

ti

it

it

it

it

n
n

n
n

n
n

n
n

n

n
nn

n

n
nn

nn

nn

nn

nn

R

























 (7) 

where θt can be derived from θi by Snell's law and is simplified using 

trigonometric identities. Fig.16 shows the relation between reflection 

coefficient and incident angle of single crystal diamond and the curve 

indicates why the un-wear land is grey and the wear lands is white. 

Fig.17 shows the vectors used to define the bidirectional 

reflectance distribution function (BRDF fr(ωi, ωo)). All vectors are an 

unit length. ωi points toward the light source. ωo points toward the 

camera. n is the surface normal. The BRDF was defined by Edward 

Nicodemus in the mid-sixties. The modern definition is 
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where L is the radiance, E is the irradiance, and θi is the angle made 

between ωi and the surface normal, n. Because the tool wear is 

relatively very small and the distance to the camera is relatively 

extremely long so that the angle θi is around zero, the bidirectional 

reflectance distribution function does not almost affect on the grey 

level of image. 

 

Fig.16 Variables between reflection coefficient and incident angle of 

single crystal diamond (n1=1, n2=2.4176) 

 

Fig.17 Schematic diagram of the light reflectance distribution 

Based on the digital image pre-processing method, the inner- and 

outer-contours can be obtained. The grey level of the inner-contour of 

original image is calibrated with zero, and the (ith, jth) grey gradient 

compared with the un-wear land grey level is the reflection 

coefficient Ri, so that the incident angle θi can be resolved, and then 

the depth of tool wear is inverse tangent of the incident angle θi. The 

sum of the depth of tool wear for all pixels from the inner-contour to 

outer-contour is calibrated with the depth of outer-contour (B’B-curve 

just as shown in Fig.3) which can be calculated with tool parameters, 

as shown in Tab.1. The calibration method is auto-regressive 

calibration method. Fig.18 is the result based on auto-regressive 

calibration method for the 200th Row. And Fig.19a is the 3D 

topography of tool wear land (BC-land just as shown in Fig.3) based 

on the new auto-regressive calibration method and VBmax is 1.84µm, 

and Fig.19b is its SEM photograph and VBmax is around 2.0µm. So the 

result shows that the topographic surface of the tool wear lands is 

extremely similar. 

 

Fig.18 BC-curve of the200th row of the tool wear image based on the 

auto-regressive calibration method 

  

Fig.19 Tool wear land a) 3D reconstruction using the auto-regressive 

calibration method and b) SEM photograph (View angle 50o) 

3. Discussion 

3.1 Effect of Thresholds 

To estimate the algorithm's reliability, the method is used to detect 

the wear land for another SCDT, which arc radius is 2.5mm. By using 

the previous method to process its image with the two thresholds 94 

& 184, the result shows in Fig.20. 

 

Fig.20 Wear detection of raster milling cutter with radii of 2.5mm (a) 

Initial image, (b) Tri-value image and (c) Wear land image 

When the two thresholds are chosen, the values fluctuate in one 

certain range due to coolant remains, chip relics and light, the effect 

of thresholds must be considered. Three different groups of two 

thresholds are 91 & 180, 94 & 184 and 96 & 187, to segment its 

initial image to extract tool wear lands, separately and then to 

calculate sum of white pixels for each row, which result shows in 

Fig.21. The result suggests that, compared with the three different 

groups of two thresholds, the error is less than 7.8%, the method is 

self-adaptive and auto-regressive. It is inferred that the algorithm is 

sufficiently reliable and efficient to filter the noise and to eliminate 

the feigned wear lands. 

 

Fig.21 Influence of different thresholds 

3.2 Influence of the Polynomial Fitting Degree 

Through using the different degrees to fitting the data (Fig.13), 

the wear area and maximal wear width are shown in Fig.22. From 

Fig.22a the degree is one in the range between 10 and 20, and from 

Fig.22b, the degree is more than 13. The optimal degree is 14, 

because of considering the computer consuming time. 

 

Fig.22 Effects of different fitting degrees on tool wear lands a) wear 

area effect and b) VBmax effect 

The result indicates that, in the polynomial fitting, the bigger the 

degree, the more sensitive it is to high frequency (HF) signals and the 

greater the computer consuming time. So, when the high frequency 

signals are filtered, whether the fitting degree is fit or not is the key to 

the result. 

4. Conclusions 

In this paper, a new auto-regressive calibration algorithm using a 

digital image being in-process captured through an in-process 

measurement system mounted in the UPRM machine 705G is 

developed to reconstruct 3D topography of the SCDT wear lands. The 

method is reliable to solve the extreme difficulties from strongly 

harmful impacts on the image, such as effects of relics of the coolant 

a) b) c) 

a) b) 

Rake face 

Flank face 
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and chips and light upon the rake face. Some concluding remarks are 

given as follows: 

1) By using the digital image processing technique such as median 

filtering, threshold segmentation, edge detection and Hough arc 

transform, the tool wear lands are reliably separated from a tool 

wear image and the feigned wear lands is eliminated by the traverse 

search method of arc translation; 

2) The least square polynomial fitting method is adopted to fit the 

inner and outer-contour of wear lands, which filters high frequency 

noises and smoothes the discontinuous wear lands; 

3) The new auto-regressive calibration method is developed to 

reconstruct the surface topography of the tool wear, which  is 

extremely similar to its SEM photograph, and the VBmax of the wear 

land is almost equal; 

4) The wear land can be completely extracted and the tool wear area, 

maximal tool wear width, average tool wear width and worn 

volume can be automatically calculated by the new auto-regressive 

calibration method, which provides one possible solution for the in-

process 3d-wear measurement of the SCDT wear; 

5) The reliability of the algorithm is validated, auto-regressive and 

self-adaptive. 
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