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NOMENCLATURE 

aK : Servo Amp. gain [mA/V] 

M : Mass [kg] 

B : Viscosity coefficient of cylinder [Nm/sec] 

sK : Spring coefficient [N/m] 

dC : Discharge coefficient 

LF : Disturbance 

w : Area Gradient [m] 

vx : Spool displacement [m] 

V : Total Volume in cylinder [m3] 

 

 

1. Introduction 

 

Enhanced functionality of measurement instrument using modern 

digital technologies has led to highly precise and reliable controllers 

for hydraulic systems. Electro-hydraulic servo systems, taking the 

advantages of the hydraulic and electro signal processing, are 

attracted significant attention in the industrial field. However, the 

electro-hydraulic servo systems suffer two major difficulties: (a) 

nonlinearities caused by input saturation, directional change of 

valve opening, oil leak, or friction; and (b) fluctuation in the system 

parameters due to the time-varying environment such as changes of 

load condition and the bulk modulus, or variable temperature. Many 

researchers have addressed various empirical methods for 

identifying the parameters of electro-hydro servo systems [1], [2] 

and [3]. For example, Navid[1] proposed a robust force controller 

based on a linearized model of which parameters are estimated 

using a set of input-output data. For hydraulic suspension systems, 

Tan[2] has obtained the model equation by applying an input-output 

data based parameter identification technique to each sub-

component, while Majjad[3] attempted to estimate the damping 
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characteristics. Unfortunately, most of the previously addressed 

work has focused on identification of the models for control 

requiring a relatively simple model. They used a least squares 

algorithm where it is difficult to find global solutions. Therefore, 

this paper presents a parameter identification method based on a 

hybrid neural-genetic algorithm that can provide a global solution. 

Using a set of input-output data obtained through experiments, the 

proposed method estimates the system parameters of a nonlinear 

electro-hydraulic servo system, such as mass, damping coefficient, 

spring constant and bulk modules. The effectiveness of the 

proposed algorithm is demonstrated on an example electro- 

hydraulic system. 

 

2. SYSTEM MODELING 

 

2.1 Electro-hydraulic servo-system 

 

Figure 1 shows the example electro-hydraulic servo system 

designed in this work. The system is designed to operate under 

various inertia load conditions. The spring-damper system and the 

hydraulic cylinders are installed in a parallel structure with a clevis 

bearing which distributes the load vertically.  

 

 

Fig. 1: Schematic of electro-hydraulic servo-system 

 

The spring and damping system, which are used, are taken from a 

suspension system of vehicles. The hydraulic cylinder is a single-rod 

cylinder with 140 mm stroke. The displacement is measured with a 

potentiometer with a 12-bit A/D and D/A board. The entire system is 

controlled by a personal computer with 66 MHz clock speed. The 

position controller of the system is described in Fig.2.  
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Fig. 2 Schematic diagram of electro-hydraulic position control 

system 
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Figure 3: Single-rod electro-hydraulic servo system 

 

Position of the hydraulic cylinder piston is measured with a 

potentiometer. This information is then fed back to the controller to 

compute the control input which will generate, via the servo amplifier, 

the displacement in the servo valve spool so that the position error 

can be removed by adjusting the flow into the cylinder. Assume that 

input-current )(ti and control-input )(tu  has a proportional 

relation, i.e., )()( tuKti a . The servo valve and the cylinder 

loading system are shown in Fig.3. 

 

2.2 Kinetic equation for the single-rod cylinder 

 

The flow ( 1q ) into the cylinder depending on the spool 

displacement can be represented by 
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Let the portion supplying flux to the cylinder be defined as the 

control volume. Applying the law of mass conservation, a kinetic 

equation in terms of the pressure and the spool depending on the 

pressure and the spool displacement can be given by Eq. (2):  
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Since Eq. (2) is also applicable to the opposite side of the cylinder 

where the flux flows out, Eq. (3) can be obtained by transforming 

the density related term into the pressure related one:  
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Note that these two equations cannot be combined since a single-rod 

cylinder is used in this work. Since the spool displacement can be 

either 0x  or 0x , Eq. (3) is rewritten with regard to the 

variation of the pressure by introducing a sign function sgn(n):  
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The kinetic equation for the single-rod cylinder and the load can be 

represented by  
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Let 11 xp  , 22 xp  , 3xxp  , 4xxp   in Eqs. (1) ~ (5). 

Ignoring the disturbance LF  then yields to the state equations in Eq. 

(6):  
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3. HYBRID NEURAL-GENETIC ALGORITHM 

 

3.1 Hybrid neural-genetic algorithm 

 

For structured system identification, a large number of algorithms 

have been developed over the last few decades. The related studies 

can be referred in [4], [5] and [6]. However, a generic solution to this 

problem has not been found yet for the system where ):,( f  and 

):,( g  are nonlinear and θ has a higher order.  

In this work, a multi-model hybrid neural-genetic algorithm is 

employed to find unique solutions satisfying with the condition for 

nonlinear systems identification.  

The hybrid neural-genetic algorithm consists of a recurrent 

incremental credit assignment (ICRA) neural network and a genetic 

algorithm. The former computes a credit function for each member of 

a generation of the models while the latter provides the generations of 

a new model using the credit functions as the selection probabilities. 

The credit function reflects the closeness of each model's output to the 

true system output and the genetic algorithm searches the parameter 

space by a divide-and-conquer technique.  

In this paper, every model in a generation is evaluated by using the 

neural network algorithm, and the generation of a new model is 

performed by the genetic algorithm in every epochs. In particular, the 

genetic algorithm is beneficial for searching the globally optimized 

model.  

The ICRA neural network is used to evaluate the model 

),,( 21 KQ   , where Q  contains K -set of parameters 

and K  is unknown. The true system output and the model output 

are given by Eqs. (8) and (9), respectively.  
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where, sY  contains the true system output measurements, 

accumulated over N  time steps, and 
k

sY  contains the output of 

k th model, accumulated N  time steps.  

Let a new time variable s  be defined such that 1s  for 

Nt ,,2,1  , and 2s  for, NNNt 2,,2,1  and the 

error function  )    ( g  be defined as 
k
sE .  
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where |    |   denotes Euclidean norm and  is a dynamically 

adjusted error spread parameter. The credit function can be defined as  
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Eq. (11) is calculated repeatedly with respect to ,,2,1 s  and 

satisfies Eq. (12) for all s:  
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where, the initial values 
kp0  are arbitrarily selected, provided Eq. 

(12) is satisfied. If )( k
sEg  is larger than )( j

sEg , 
k
sp  

determined by Eq. (11) increases. It is important to note that a large 

)( k
sEg  implies a small 

k
sE . Hence, the proper value of the credit 

function indicates how well the k-th model has approximated the 

observed model behavior up to time s . Therefore 1lim 


k
s

s
p  

indicates a large )( k
sEg , which again implies a small 

k
sE . 

Consequently, 
k
sp  which is close to one indicates good 

approximation and the best model within the parameter space.  

Translating the problem of system identification in the genetic 

algorithm, an individual is a model determined by the parameter 

vector k  and the population is search subset Q . Each parameter 

is encoded by a string bit, which becomes a concatenation of strings. 

This concatenation of strings results in a longer string which encodes 

the parameter k . Fitness of each individual is related to the 

accuracy by which it predicts the system behavior.  

 

3.2  Genetic algorithm composition 

 

The genetic algorithm adopts the following components, which are 

composed the algorithm.  

1) Selection Mechanism: A roulette wheel is used to randomly 

choose the models according to the selection probability which is 

exactly the ICRA credit.  

2) Genetic Operation: Mutation operates on a model of the old 

generation, choosing m  bit out of the dn   genotype string, and 

reverses these bits (i.e., 1 becomes 0 and vice verse) Crossover 

operates on two models of the old generation, dividing the genotype 

string of each model into m  parts. The offspring is created by 

choosing the genotype fragment from each parent alternately.  

3) Elitism: This implies that the best model of each generation is 

always included in the next generation.  

4) Entropy criterion: Entropy criterion is used to ensure diversity in 

the models of each generation. Although Elitism and Hill-climbing 

can speed up the algorithm, getting into a local minimum rather than 

a global minimum. To avoid this, in every model generation, it is 

necessary to maintain a number of models, with sufficient diversity, to 

be explored. This problem become worse by the elitism and Hill-

climbing which tend to enforce the presence of the fitness models. 

However, if the 
k
sp  do not sufficiently concentrate on promising 

models, the search of the parameter space will be essentially random.  

To avoid this problem, the ICRA network must stop operating after 

the 
k
sp `s start concentrating to a promising model, but before they 

get too close to either 1 or 0. For achieving this goal, the ICRA neural 

network has to operate during a variable number of steps. The number 

of steps is determined depending on an entropy criterion.  
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The maximum value of sH  is given by )log( K , which is 

achieved when Kpppp K
ssss /1321    i.e., the value 

of 
k
sp  is equivalent to every model. The minimum value of sH  is 

0, and is achieved for kmpp m
s

k
s  ,0,1 , i.e., all the 

probabilities are concentrated on a single model. If the 
k
sp  

converge to either 0 or 1, sH  converges to 0. Let the dynamic 

threshold be defined by Eq. (14)  
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      (14) 

 

Eq.(14) is a linearly increasing function satisfying the inequality Eq. 

(15) for Ts  .  
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     (15) 

 

The inequality Eq. (15) is the entropy criterion which determines 

a number of varying steps in the ICRA neural network. The ICRA 

neural network stops operating once the entropy of 
K
sss ppp ,,, 21   

becomes lower than sH . When the sH  is linearly increasing and 

the sH  converges to 0, the result stays at a value of entropy 

between 0 and 1, ensuring the 
k
sp  being neither converged nor 

diverged. 

 

4. Experimental results 

 

4.1 Experimental results 

In the experiment, the proposed algorithm is applied to identifying 

the system parameters including mass, damping coefficient, bulk 

modulus and spring coefficient. The input-output data set has been 

obtained from the example electro-hydraulic servo system which is a 

1-DOF system. Since the parameters of the example system are 

unknown, the accuracy of the estimated parameters is evaluated by 

comparing the estimated trajectories with the measured trajectories.  

The experimental results have been obtained by applying PRBS as 

the input to the system described in Fig.1. The sampling time and the 

number of measured data are 100 Hz and 12000, respectively.  

For searching the parameter space, each set of the unknown 

parameters is defined as an individual of which population size is 30, 

crossover probability = 0.8, mutation probability = 0.01, and the 

number of generations = 1000. The ICRA parameter  =15 and each 

generation involves around 500~600 credit updates.  

Figure 4 shows the best credit value of each generation. Note that 

the credit value is converged to the best credit after only 34 

generations. Using the Elitism, the best credit has been obtained after 

9 generations.  

The credit value is given by 0.4008. The identified parameter 

values are M = 58.0, C = 3.7, sK = 214.12, and mK = 16324.71. 

Note that the identified parameter of M , which is measurable, is 

similar to the true value. In Figure 4, only 2000 data are shown to 

avoid excessive complexity caused by the large data set.  
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Figure 4: Diagram of best credit in each generation 

 

Figure 5 shows the comparison of the system responses to PRBS. 

Figure 6 shows the output within the scope of the data 210 ~ 410 in 

order to assist with clear interpretation.  
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Figure 5: Comparison true output with estimated output 

 

The experimental results in Fig. 5 indicate that there are some 

discrepancies between the measured and the estimated responses 

although the overall trend is well matched. The reasons for this error 

can be the nonlinearities introduced by: directional changes of valve 

opening; the time delay in the servo valve; friction between the 

guideline and the bearing; and the noise. These factors have not been 

considered in the system modeling. 
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Fig. 6 Detail comparison true output with estimated output in position 

 

Figure 7 illustrates the ISE (integrated square errors) between the 

responses of the identified model output and the measured output. 

The reason for not converging to the minimum value is the fact that, 

once the credit has updated, not only does the ISE converge to the 

minimum value but also the trend of the actual displacement output is 

estimated. The experimental results show that the estimation accuracy 

can be improved if more nonlinearities, such as Coulomb friction, are 

considered in the system modeling. 
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Fig. 7 Squared error in each generation 

 

4.2 Results Discussion 

 

These results highlight that the proposed algorithm is an efficient in 
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finding the optimal solutions. The accuracy of the parameters 

identified using the proposed method has also been verified by 

comparing the estimated results with the measured results. 

 

5. Conclusions  

 

In this paper a parameter identification algorithm using a hybrid 

neural-genetic algorithm has been presented. The proposed algorithm 

is applied to identifying unknown parameters of a electro- hydraulic 

servo system. Using a set of input- output data obtained through 

experiments, several system parameters of the example electro- 

hydraulic servo system have been identified, which are mass M = 

58.0, damping coefficient C = 3.7, spring coefficient sK = 214.12, 

and bulk modulus mK = 16324.71. These results highlight that the 

proposed algorithm is an efficient in finding the optimal solutions. 

The accuracy of the parameters identified using the proposed method 

has also been verified by comparing the estimated results with the 

measured results. For achieving the better estimation accuracy, it may 

be necessary to achieve a better resolution as well as to employ a 

more precise model with increased number of parameters.  
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