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NOMENCLATURE 

 

f = evaluated profile 

L = length of evaluated profile 

N = number of discrete points on L 

s = sampling interval 

D1, D2 = interval between two displacement sensors 

d1, d2 = integer coefficient where di = Di /s, i = 1, 2 

N1, N2 = number of sampling points in the first and second 

scan where Ni = N – di, i = 1, 2 

m1, m2 = outputs of two displacement sensors 

m3 = output of angle sensor 

u1, u2 = zero-point errors of two displacement sensors 

u3 = zero-point error of angle sensor 

ey, ep = translational error and pitching error of scanning 

stage 

y1, y2 = combined difference from the outputs of three 

sensors where yi = m2 – m1 – Di  m3, i = 1, 2 

c1, c2 = combined difference from the zero-point errors of 

three sensors where ci = u2 – u1 – Di  u3, i = 1, 2 

 

 

1. Introduction 

 

For the ultra-precise profile measurement of large specimens such 

as optical component and machined surface, the scanning system with 

multiple sensors can be employed1,2. The probes of multiple sensors 

are tiled horizontally or vertically with certain intervals and mounted 

on a scanning stage so that the whole profile of the specimen can be 

scanned. To obtain the real profile from the measuring data of the 

multiple sensors, a reconstruction algorithm should be applied to 

separate the motion errors of the scanning stage and the zero-point 

error3 of each sensor. Moreover, it is better for the algorithm to reduce 

the influences of the random errors of sensors. In the following, 

several algorithms for the multiple sensors scanning method will be 

introduced. 

The sequential method4 and the integration method5 are 

commonly applied to the two-point scanning system. Note that an 

additional angle sensor is necessary to detect the pitching error of the 

scanning stage directly. Because the sampling interval is restricted to 

be equal to the interval between two displacement sensors, the 

sequential method can realize an error-free reconstruction with the 

iteration equation. However, in practice, due to the limitation of the 

physical size of the sensors, the lateral resolution may not be enough 
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as desired. The integration method allows the sensor interval larger 

than the sampling interval. However, this algorithm can not realize an 

error-free reconstruction and has a high accuracy only for the profile 

with long spatial wavelength5. 

The least squares method6,7 using matrix equation can be applied 

to a three or more displacement sensors system with an additional 

angle sensor. In this case, the outputs of sensors can provide enough 

information to build a series of linear equations, which own a least 

squares solution if the jacobian matrix has a full column rank. 

Therefore, the least squares method can not only realize the error-free 

reconstruction but also reduce the influence of the random error 

effectively6. 

Apart from the least squares method described above, there is also 

a kind of method using the discrete Fourier transform in frequency 

domain. It has been successfully applied to a three-sensor system for 

the roundness measurement8. Elster applied this method to a two-

angle-sensor system for profile measurement firstly9,10. In order to 

solve the problem of the harmonics loss, Elster also proposed a two-

set of two-point method which performs scanning twice with different 

sensor intervals. The innovative algorithm can realize an error-free 

reconstruction in the absence of the zero-point errors of sensors. 

The zero-point error is existent objectively and is difficult to be 

calibrated completely by hardware. For a two-sensor system, it is well 

known that the zero-point error only causes a linear deviation which 

has almost no influence for evaluating the profile. However, for the 

two sets of two-point method, the calibration of the zero-point error 

has not been discussed adequately11,12. In this paper, two kinds of 

algorithms using the discrete Fourier transform and least squares 

method respectively will be applied to solve the profile reconstruction 

of the two-set of two-point system. The paper is organized as follows: 

In Section 2, we will build the model of the multiple sensors scanning 

system. An improved algorithm based on Elster’s discrete Fourier 

transform method is proposed. Also, the least squares method will be 

applied to the two-set of two-point system for the first time. In 

Section 3, Comparisons between two algorithms, including the 

restriction of parameter selection, noise suppression capability and the 

computational complexity, will be described. In Section 4, some 

experiments are carried out and the results are reported. 

 

 

2. Reconstruction Algorithms 

 

2.1 Model of Multiple Sensors Scanning System 

Figure 1 shows the schematic of multiple sensors (two 

displacement sensors and one angle sensor) scanning system at the 

sampling point n. Two displacement sensors are installed on a 

scanning stage with interval D1 to scan the profile f along the x-axis. 

An angle sensor is set up on the extra line of the motion locus of the 

scanning stage to detect the pitching error of the stage. If we appoint 

the sampling interval s and the number of discrete points N, the length 

of evaluated profile is L = (N - 1)  s. The start point of scanning is 

where the left displacement sensor is at x1 and the end point of 

scanning is where the right displacement sensor is at xN. To detect the 

spatial wavelength D1 of the profile and its harmonic component, a 

second scanning with sensor interval D2 can be considered. The 

sampling interval at the second scan should be kept same as the first 

scan so that the same sampling points can be scanned once more.  

As shown in Figure 2, A valid two scan process should satisfy the 

necessary condition (but not the sufficient condition) that is D2 < L – 

D1. 

Assume that the vertical translational error and the pitching error 

of the scanning stage are ey and ep, two displacement sensors outputs 

(m1, m2) and the angle sensor output (m3) can be expressed as follows: 


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Where u1, u2, u3 are zero-point errors of three sensors, b0 is the 

distance between the x-axis and the reference line of motion locus of 

stage, d1 = D1 / s is an integer coefficient, N1 = N – d1 is the number of 

sampling points in the first scan. After cancelling ey and ep, Eq. (1) 

can be simplified as follows: 
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For a similar derivation, the model of the second scan can be 

obtained as follows: 

  

 

Fig. 1 Schematic of multiple sensors (two displacement sensors and 

one angle sensor) scanning system at sampling point n 

 

Fig. 2 Two scan process with sensor interval D1 and D2 respectively. 

The condition D2 < L – D1 is necessary. 
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
2 2 2 2( ) ( ) ( ) ,     [1, ]y n f n d f n c n N      

Where y2 is a combined difference from the outputs of three 

sensors like y1, c2 is also a combined difference from the zero-point 

errors of three sensors like c1. d2 = D2 / s is an integer coefficient, N2 = 

N – d2 is the number of sampling points in the second scan. The aim 

of reconstruction algorithm is to calculate the profile f according to y1 

and y2. 

 

2.2 Discrete Fourier Transform Method 

The basic algorithm combining two scan data y1 and y2 to 

reconstruct the profile exactly was presented by Elster9. In his method, 

the discrete Fourier transform (DFT) method is used without 

considering the zero-point errors of each sensor. Yin proposed a 

calibration method to eliminate the influence of the zero-point errors, 

however a mistaken hypothesis exists in the initial derivation12. 

Moreover, there is not a total solution in the presence of the zero-

point errors and the random errors of sensors. 

To perform DFT toward the total discrete points N, profile f 

should be looked as a function with a period L. By use of the natural 

extension method9, the values of y1 and y2 when n = [N1+1, N] and n 

= [N2+1, N] can be calculated from the known values of y1 and y2 in 

Eq. (2-3). By performing DFT on y1 and y2, the following expressions 

can be obtained: 
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Eq. (4), especially for function Z, is deduced exactly and the 

process is omitted here. Because F1 is equal to F2 in certain common 

range of k, the difference of a1 and a2 can be calculated as follows: 
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Using the compensation factor a12, a combined Fourier coefficient 

can be obtained as follows: 
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By performing the operation of Inverse Discrete Fourier 

Transform (IDFT) on Yc, the profile f can be obtained immediately. 

However, to reconstruct the profile in whole spatial frequency which 

means k = [1, N – 1] except 0, the following conditions should be 

satisfied: 
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Where the notation GCD means the Greatest Common Divisor. 

Compared with the conditions deduced by Elster9, the new conditions 

allow us to select sensor interval more flexibly. Especially, when the 

number of discrete points N is very large, for example N = 10000, it is 

easy to find an optimum combination of d1 and d2 which owns a good 

measurement uncertainty. 

Next, the measurement noise added in the outputs of sensors is 

considered. In this case, a unique a12 can not be obtained anymore. 

But, if we assume all the noise obeys a Gaussian distribution with 

zero mean, an unbiased estimator of a12 can be obtained by use of 

weighted mean method as follows: 
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Using the new compensation factor calculated by Eq. (8), a series 

of unbiased estimators of Yc can be obtained by use of weighted mean 

method as follows: 


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where w1 and w2 are defined as follows: 
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By performing the operation of IDFT, the estimator of the profile 

f can be obtained. The measurement uncertainty caused by the 

random errors from the sensors is investigated by use of the Monte 

Carlo method11. The basic results are that the uncertainty has nothing 

to do with the profile itself and the zero-point errors of sensors. The 

value of the uncertainty is convergent and just determined by the 

number of discrete points N, sampling interval s and sensor intervals 

D1, D2.  

Figure 3 shows an example of uncertainties of reconstructed 

profile by DFT method. The number of discrete points N is 330 and 

the sampling interval s is 1 mm. Additional random errors of 

displacement sensors and angular sensor obey zero mean Gaussian 

distribution with standard deviations of 10 nm and 1 nm/mm 

respectively. Solid line is the case that d1 = 10, d2 = 11 and dot line is 

the case that d1 = 3, d2 = 11. As we can see, the uncertainties of each 

point are different. The edge parts on the two sides of the uncertainty 

curves suffer much more increase than the middle parts of the curves, 

since the edge parts of the profile can only obtain the data of one 

displacement sensor in a scan process. If we ignore the edge influence, 

most of the values of uncertainties are close to 12 nm which owns the 

same level as the random errors of the displacement sensor. 

 

2.3 Least Squares Method 

Compared with discrete Fourier transform method, it is much 

simpler to solve the model of the multiple sensors scanning system by 

use of least squares (LS) method6. Firstly, we define the least squares 
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reference line of the evaluated profile as the x-axis (cf. Figure 1). 

Therefore, two points on the profile, for example fN-1 and fN, can be 

calculated by the other points on the profile as follows: 


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According to Eq. (2-3, 10), the observation equation can be 

obtained as follows: 
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Here Y denotes the column vector of the measured data in two 

scan process and X denotes the column vector of unknown 

parameters (not including final two points of profile f). B denotes the 

Jacobian matrix, the elements of which are determined by N, d1 and 

d2. A least squares solution of X can be obtained when the column 

rank of B is equal to the column size of B, also the row size of B is 

larger to the column size of B. The above conditions can be simplified 

as follows: 
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In the least squares method, the measurement uncertainty caused 

by the random errors from the sensors can be obtained easily using 

the transmission matrix as follows: 

 T 1 1( ) pS B S B  

Here S denotes the error matrix of the measured data, the 

elements of which can be determined by the standard deviation of the 

random errors of sensors. Sp denotes the error matrix of the 

parameters, the diagonal elements of which show the variances of the 

parameters (not including final two points of profile f). The 

expressions of detail elements about S and Sp are omitted here6,7. 

Figure 4 shows an example of uncertainties of reconstructed 

profile by least squares method. The number of discrete points N is 

330 and the sampling interval s is 1 mm. Additional random errors of 

displacement sensors and angular sensor obey zero mean Gaussian 

distribution with standard deviations of 10 nm and 1 nm/mm 

respectively. Solid line is the case that d1 = 10, d2 = 11 and dot line is 

the case that d1 = 3, d2 = 11. As we can see, the feature of the 

uncertainty curve is similar to the discrete Fourier method (cf. Figure 

3). But the effect of the edge parts on the two sides seems not so 

abrupt. If we ignore the edge influence, most of the values of 

uncertainties are close to 12 nm. 

 

 

3. Comparison of Two Kinds of Algorithms 

 

As described above, it is necessary to scan the profile twice with 

different sensor intervals so that the lost spatial wavelength in a two-

point scan can be recovered from the other two-point scan. Both 

discrete Fourier transform (DFT) method and least squares (LS) 

method have the ability to reconstruct the profile in the presence of 

zero-point errors and random errors of sensors. But the procedure of 

calculation for DFT method can get highly complex and difficult to 

understand. On the other hand, LS method gives a direct solution by 

use of matrix equations. 

Table 1 shows a comparison between DFT method and LS 

method. As for the parameter condition, it is necessary that d1 and d2 

have no common divisor in either method. Additionally, N = p  d1  

d2 for DFT method and N > d1 + d2 for LS method should be satisfied. 

It is obvious that the selection of intervals (D1 = d1  s, D2 = d2  s) 

between two displacement sensors is much more flexible by use of 

LS method. 

The uncertainty is a key evaluation index for algorithms of 

precision measurement. Monte Carlo method and transmission matrix 

are applied to DFT method and LS method respectively. Figure 5 

shows an example of uncertainties of reconstructed profile. Solid line 

is the result of DFT method and dot line is the result of LS method. 

The non dimensional coefficient d1, d2 are set as 10 and 11. The 

number of discrete points N is 330 and the sampling interval s is 1 

mm. Additional random errors of displacement sensors and angular 

sensor obey zero mean Gaussian distribution with standard deviations 

of 10 nm and 1 nm/mm respectively. Although the middle parts of 

both curves are almost equal, the edge parts on the two sides of DFT 

method suffer much more increase than LS method. With many 
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Fig. 4 Uncertainties of reconstructed profile by least square method. 

Solid line is the case that d1 = 10, d2 = 11. Dot line is the case that d1 

= 3, d2 = 11. The number of discrete points N is 330 and the sampling 

interval s is 1 mm. Additional random errors of displacement sensors 

and angular sensor had standard deviations of 10 nm and 1 nm/mm 

respectively. 
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Fig. 3 Uncertainties of reconstructed profile by discrete Fourier 

transform method. Solid line is the case that d1 = 10, d2 = 11. Dot line 

is the case that d1 = 3, d2 = 11. The number of discrete points N is 

330 and the sampling interval s is 1 mm. Additional random errors of 

displacement sensors and angular sensor had standard deviations of 

10 nm and 1 nm/mm respectively. 
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simulation results, we can say that the capability of the noise 

suppression of LS method is better than DFT method. 

Finally, the calculation speed of reconstruction is investigated. 

For DFT method, the reconstruction is fast even when N is larger than 

10000. On the other hand, the consumption of time and memory for 

LS method will become unacceptable along with the increase of data 

size. Generally, the computational complexity of DFT method using 

Fast Fourier Transform is O(nlogn), while the computational 

complexity of LS method using Matrix Multiplication is O(n3). 

 

 

4. Experiments 

 

A mirror with length of 330 mm is evaluated by use of the 

multiple sensors scanning system (cf. Figure 1). Figure 6 shows the 

experimental setup (top view) for the profile measurement. Two 

displacement sensors (LHG-110, resolution: 10 nm, accuracy: 100 nm) 

are mounted on the scanning stage along the scan direction with 

certain intervals. The sensor interval is 30 mm in the first scan, and 33 

mm in the second scan. A laser interferometer with an angle 

measurement kit (ML10, resolution: 0.01 arc-sec, accuracy: 0.2 arc-

sec) is used. The reflector mirror of the interferometer is mounted on 

the scanning stage so that the pitching error of the stage can be 

measured. The stability experiments of sensors are performed at first. 

The difference of the output of two displacement sensors is below 25 

nm, although there is a 100 nm drift of each displacement sensor in 

the test duration of 10 minutes. The stability result of the 

interferometer output in pitching error measurement is about 0.2 arc-

sec. 

The scanning stage is driven by a linear motor along the direction 

of the evaluated mirror. The number of points, sampling interval and 

time of scanning are 110, 3 mm and 3 minutes respectively. It means 

that the sampling points are 100 in the first scan, and be 99 in the 

second scan. Figure 7 shows the reconstructed results of three 

repeated measurements of the evaluated mirror by using DFT method, 

and Figure 8 shows the results by using LS method. The amplitudes 

of measured profile are all about 3 m. The standard deviation of 

three repeated measurements is 53 nm for DFT method and 41 nm for 

LS method. Figure 9 shows the difference of the reconstructed results 

between DFT method and LS method by using the same 

measurement data. As we can see, both two algorithms can 

reconstruct the profile of the mirror with high repeatability. The 

differences of the middle part of the profile between two algorithms 

are below 10 nm. However, the differences of the edge part are 

below 70 nm. This feature is due to the difference of the capability 

of suppressing the random errors of sensors between two algorithms 

(cf. Figure 5). 

 

 

5. Conclusions 

 

In this paper, a scanning system based on two displacement 

sensors and one angle sensor is described for on-machine profile 

measurement. Two algorithms, which are discrete Fourier transform 

method and least squares method, are applied to reconstruct the 

profile from the outputs of three sensors. Both algorithms could 

provide exact reconstructions in the presence of zero-point errors of 

sensors and stage errors. The uncertainties caused by the random 

errors of sensors are deduced by using Monte Carlo method and the 

transmission matrix. It is possible for us to select optimum parameter 

conditions with good uncertainties. We also compare two algorithms. 

By use of least squares method, the selection of parameter could be 

more flexible and the uncertainty could be less than discrete Fourier 

transform method. The drawback of least squares method is the 

calculation speed, which will be unacceptable along with the increase 

of data size. An experimental multiple sensors scanning system has 

been constructed to evaluate a mirror with length of 330 mm. Both 

algorithms reconstructed the profile of the mirror successfully with 

repeatability of about 50 nm. The congruence of the evaluated results 

of the profile between two algorithms is also confirmed by using the 

same measurement data. 
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Fig. 5 Uncertainties of reconstructed profile. Solid line is the result 

of Fourier transform method and dot line is the result of least square 

method. The number of discrete points N is 330, the sampling 

interval s is 1 mm, and coefficient d1, d2 are 10 and 11. Additional 

random errors of displacement sensors and angular sensor had 

standard deviations of 10 nm and 1 nm/mm respectively. 



6  /   XXXX 200X INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING   Vol. X, No.X 

 

This research has been supported by the National Nature Science 

Foundation of China (No.50905116). 

 

 

REFERENCES 

 

1. Gao, W., Arai, Y., Shibuya, A., Kiyono, S. and Park, C. H., 

"Measurement of multi-degree-of-freedom error motions of a 

precision linear air-bearing stage," Precision Engineering, Vol. 30, 

No. 1, pp. 96-103, 2006. 

2. Evans, C. J., Hocken, R. J. and Estler, W. T., "Self-calibration: 

reversal, redundancy, error separation, and 'absolute testing'," 

CIRP Annals - Manufacturing Technology, Vol. 45, No. 

Compendex, pp. 617-634, 1996. 

3. Gao, W., Yokoyama, J., Kojima, H. and Kiyono, S., "Precision 

measurement of cylinder straightness using a scanning multi-

probe system," Precision Engineering, Vol. 26, No. 3, pp. 279-288, 

2002. 

4. Tanaka, H., Sato, H., O-hori, M., Sekiguchi, H., Taniguchi, N. and 

Tozawa, K., "APPLICATION OF A NEW STRAIGHTNESS 

MEASUREMENT METHOD TO LARGE MACHINE TOOL," 

CIRP Annals - Manufacturing Technology, Vol. 30, No. 

Compendex, pp. 455-459, 1981. 

5. Kiyono, S. and Gao, W., "Profile measurement of machined 

surface with a new differential method," Precision Engineering, 

Vol. 16, No. Compendex, pp. 212-218, 1994. 

6. Elster, C., Weingartner, I. and Schulz, M., "Coupled distance 

sensor systems for high-accuracy topography measurement: 

Accounting for scanning stage and systematic sensor errors," 

Precision Engineering, Vol. 30, No. 1, pp. 32-38, 2006. 

7. Liu, S., Watanabe, K., Chen, X., Takahashi, S. and Takamasu, K., 

"Profile measurement of a wide-area resist surface using a multi-

ball cantilever system," Precision Engineering, Vol. 33, No. 1, pp. 

50-55, 2009. 

8. Gao, W., Kiyono, S. and Nomura, T., "New multiprobe method of 

roundness measurements," Precision Engineering, Vol. 19, No. 

Compendex, pp. 37-45, 1996. 

9. Elster, C. and Weingartner, I., "Exact wave-front reconstruction 

from two lateral shearing interferograms," Journal of the Optical 

Society of America a-Optics Image Science and Vision, Vol. 16, 

No. 9, pp. 2281-2285, 1999. 

10. Elster, C. and Weingartner, I., "Solution to the shearing problem," 

Appl. Optics, Vol. 38, No. 23, pp. 5024-5031, 1999. 

11. Geckeler, R. D., "Error minimization in high-accuracy scanning 

deflectometry," Proceedings of SPIE - The International Society 

for Optical Engineering, Vol. 6293, pp. 1-12, 2006. 

12. Yin, Z. Q. and Li, S. Y., "Exact straightness reconstruction for on-

machine measuring precision workpiece," Precision Engineering, 

Vol. 29, No. 4, pp. 456-466, 2005. 

interference 

mirror

stage

reflector mirror

evaluated mirror, length is 330 mm

interferometer

displacement 

sensor

scan direction

first scan: 30 mm

second scan: 33 mm

 

Fig. 6 Experimental setup (top view) for profile measurement of a 

mirror with length of 330 mm 
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Fig. 7 Reconstructed results of three repeated measurements of the 

evaluated mirror by using discrete Fourier transform method. The 

standard deviation is 53 nm. 
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Fig. 8 Reconstructed results of three repeated measurements of the 

evaluated mirror by using least squares method. The standard 

deviation is 41 nm. 
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Fig. 9 Difference of the reconstructed results between discrete 

Fourier transform method and least squares method by using the 

same measurement data 


